

Medium Power BIDI® Optical Standard Module 1310 nm Emitting, 1310 nm Receiving

SBM52214x

Features

- Designed for application in passive-optical networks
- Integrated Wavelength Division Multiplexer (WDM) or Beam Splitter
- Bi-Directional Transmission in one optical window
- Single fiber solution
- FP-Laser Diode with Multi-Quantum Well structure
- Class 3B Laser Product
- Suitable for bit rates up to 1.25 Gbit/s
- · Ternary Photodiode at rear mirror for monitoring and control of radiant power
- Low noise / high bandwidth PIN diode
- Hermetically sealed subcomponents, similar to TO 46
- With singlemode fiber pigtail

Pin Configuration

Pin Configuration

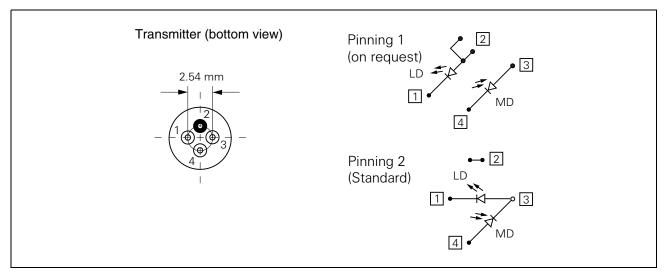


Figure 1 Transmitter

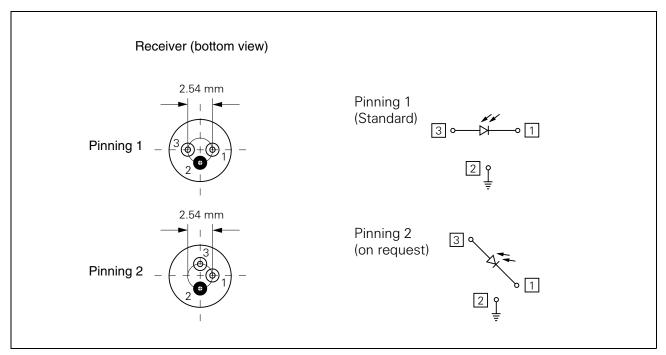


Figure 2 Receiver

Available Pinnings

Туре	Transmitter	Receiver
SBM52214x	2 (Standard)	1 (Standard)

Other Pinnings on request / different drawing set required for non standard pinning

Description

Description

The Infineon module for bidirectional optical transmission has been designed for different optical networks structures.

In the last few years the structure has changed from point to point planned for Broad band ISDN to a point to multipoint passive optical network (PON) architecture for the optical network in the subscriber loop.

A transceiver can be realized with discrete elements (Figure 3). Transmitter and receiver with pigtails are connected with a fiber-coupler (2:1 or 2:2, wavelength independent or WDM).

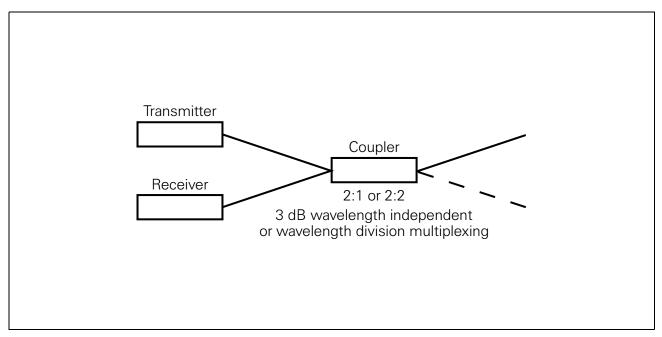


Figure 3 Realization with Discrete Elements

Infineon has realized this transceiver configuration in a compact module called a BIDI® (Figure 4).

This module is especially suitable for separating the opposing signals at the ends of a link. It replaces a discrete solution with a transmitter, receiver and coupler.

The basic devices are a laser diode and a photodiode, each in a TO package, plus the filter in the beam path. A lens in the TO laser concentrates the light and enables it to be launched into the single-mode fiber of the module. In the same way the light from the fiber is focused onto the small, light-sensitive area of the photodiode to produce a high photo current. The mirror for coupling out the received signal is arranged in the beam so that the transmitter and receiver are at right angles to each other. This means the greatest possible degree of freedom in the layout of the electric circuit.

Description

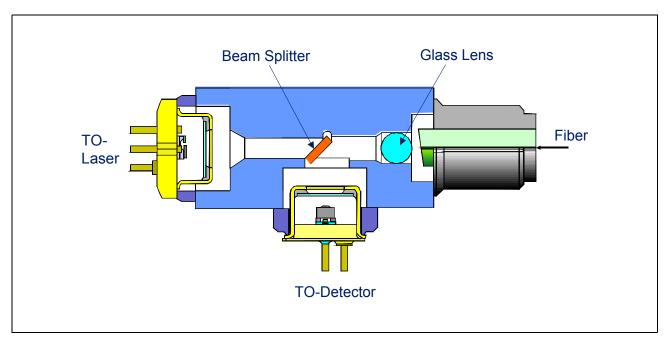


Figure 4 Compact Realization of the Transceiver in One Module

A decisive advantage of the module is its use of standard TO components. These devices, produced in large quantities, are hermetically sealed and tested before they are built in. This makes a very substantial contribution to the excellent reliability of the module. The solid metal package of the module serves the same purpose. It allows the use of modern laser welding techniques for reliable fixing of the different elements and the fiber holder.

Technical Data

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Lim	Unit	
		min.	max.	
Module	1	- 1	1	
Operating temperature range at case	T_{C}	-40	85	°C
Storage temperature range	$T_{ m stg}$	-40	85	
Soldering temperature ($t_{max} = 10 \text{ s}$, 2 mm distance from bottom edge of case)	$T_{\mathbb{S}}$		260	
Laser Diode		•		•
Direct forward current	I_{Fmax}		120	mA
Radiant power CW	$P_{F, rad}$		2	mW
Reverse Voltage	V_{R}		2	V
Monitor Diode		•		•
Reverse Voltage	V_{R}		10	V
Forward Current	I_{F}		2	mA
Receiver Diode		•		•
Reverse Voltage	V_{R}		10	V
Forward Current	I_{F}		2	mA
Optical power into the optical port	P_{port}		1.5	mW

Technical Data

The electro-optical characteristics described in the following tables are only valid for use within the specified maximum ratings or under the recommended operating conditions.

Transmitter Electro-Optical Characteristics

Parameter	Symbol		Limit Val	ues	Unit
		min.	typ.	max.	
Optical output power (maximum)	P _{F, max}	1.2			mW
Emission wavelength center of range, $P_{\rm F}$ = 0.5 $P_{\rm F, max.}$	λ_{trans}	1270		1350	nm
Spectral width (RMS)	σ_{λ}			5	
Temperature coefficient of wavelength	TC			0.5	nm/K
Threshold current (whole temperature range)	I_{th}	2		45	mA
Forward voltage, $P_{\rm F} = 0.5 P_{\rm F, max.}$	V_{F}			1.5	V
Radiant power at I_{th}	P_{th}			50	μW
Slope efficiency (–4085°C)	η	20		100	mW/A
Variation of 1st derivative of P/I (0.1 to 1.0 mW)	S_{var}	-30		30	%
Differential series resistance	R_{S}			8	Ω
Rise time (10%–90%)	t_{r}		100	200	ps
Fall time (10%–90%)	t_{f}		270	500	

Monitor Diode Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Dark current, $V_R = 5 \text{ V}$, $P_F = 0$, $T = T_{\text{max}}$	I_{R}		200	nA
Photocurrent, $V_{R} = 5 \text{ V}$, $P_{F} = 0.5 P_{F, \text{max}}$	I_{P}	50	1500	μΑ
Capacitance, $V_R = 5 \text{ V}, f = 1 \text{ MHz}$	C_5		10	pF
Tracking error ¹⁾ , $V_{R} = 5 \text{ V}$	TE	-1	1	dB

The tracking error TE is the maximum deviation of $P_{\rm F}$ at constant current $I_{\rm mon}$ over a specified temperature range and relative to the reference point: $I_{\rm mon, \, ref} = I_{\rm mon}$ ($T = 25^{\circ}$ C, $P_{\rm F} = 0.5$ $P_{\rm F, \, max.}$). Thus, TE is given by:

$$TE[dB] = 10 \times log \frac{P_{F}[T_{C}]}{P_{F}[25^{\circ}C]}$$

Technical Data

Receiver Diode Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Spectral sensitivity, $V_{\rm R}$ = 5 V, λ = 1310 nm	S_{rec}	0.3	1	A/W
Rise and fall time (10%–90%) $R_{\rm L}$ = 50 Ω , $V_{\rm R}$ = 5 V	$t_{\rm r};t_{\rm f}$		1	ns
Total capacitance $V_{\rm R}$ = 5 V, $P_{\rm opt}$ = 0, f = 1 MHz	С		1.5	pF
Dark current, $V_{\rm R}$ = 5 V, $P_{\rm opt}$ = 0	I_{D}		50	nA

Module Electro-Optical Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Optical Crosstalk ¹⁾	CRT		-22	dB

¹⁾ Optical Crosstalk is defined as

$$\mathsf{CRT}[\mathsf{dB}] = 10 \times \log \frac{I_{\mathsf{Det}.0}}{I_{\mathsf{Det}.1}}$$

with: $I_{\text{Det},0}$: the photocurrent with P_{F} = 0.5 $P_{\text{F, max.}}$, without optical input, CW laser operation, V_{R} = 2 V and $I_{\text{Det},1}$: the photocurrent without P_{F} , but 0.5 $P_{\text{F, max.}}$ optical input power, λ = 1310 nm.

End of Life Time Characteristics

Parameter Sym		Limit Values		Unit
		min.	max.	
Threshold current at $T = T_{\text{max}}$	I_{th}		60	mA
Current above threshold, over full temperature range, at $I_{\rm mon, ref} = I_{\rm mon}$ ($T = 25 ^{\circ}$ C, $P_{\rm F} = 0.5 \; P_{\rm F, max}$, BOL)	ΔI_{F}	7	70	
Tracking Error	TE	-1.5	1.5	dB
Detector Dark Current, $V_{R} = 2 \text{ V}$, $T = T_{\text{max}}$	I_{R}		400	nA
Monitor Dark Current, $V_R = 2 \text{ V}$, $T = T_{\text{max}}$	I_{R}		1	μΑ

Fiber Data

Fiber Data

The mechanical fiber characteristics are described in the following table.

Fiber Characteristics

Parameter	Limit Values			Unit
	min.	typ.	max.	
Mode Field Diameter	8	9	10	μm
Cladding Diameter	123	125	127	
Mode Field/Cladding Concentricity Error			1	
Cladding Non-circularity			2	%
Mode Field Non-circularity			6	
Cut off Wavelength	1270			nm
Jacket Diameter	0.8		1	mm
Bending Radius	30			
Tensile Strength Fiber Case	5			N
Length	0.8		1.2	m

Eye Safety

Eye Safety

Ensure to avoid exposure of human eyes to high power laser diode emitted laser beams. Especially do not look directly into the laser diode or the collimated laser beam when the diode is activated.

Class 3B Laser Product According to IEC 60825-1

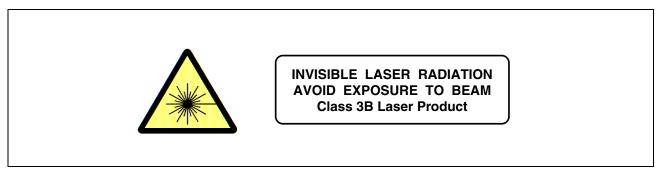


Figure 5 Required Labels

Class IIIb Laser Product According to FDA Regulations Complies with 21 CFR 1040.10 and 1040.11

Figure 6 Required Label

Laser Data

Wavelength	1310 nm
Maximum total output power	less than 50 mW
Beam divergence (1/e²)	10°

Package Outlines

Package Outlines

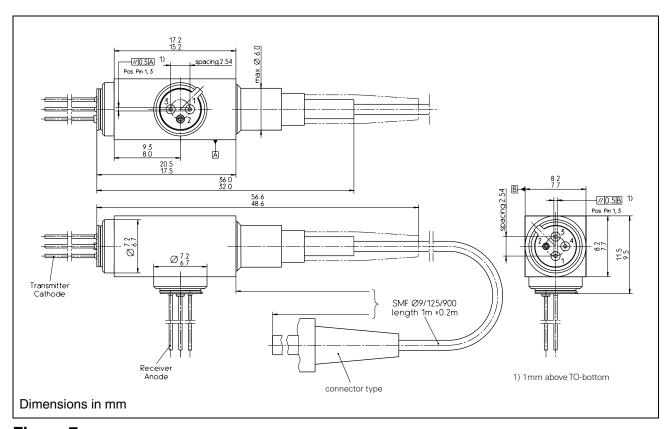


Figure 7

Connector Options

Model	Туре
SBM52214G SBM51214G	SM FC/PC
SBM52214N SBM51214N	SM SC/PC 0°
SBM52214Z SBM51214Z	SM without connector

SBM52214x

Revision	History:	2002-05-01	DS0
Previous	Version:		
Page	Subjects	(major changes since last revision)	
	Documen	t's layout has been changed: 2002-Aug.	

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com.

Edition 2002-05-01

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany
© Infineon Technologies AG 2002.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.